The ARANEUS Guide to Web-Site Development

GIANSALVATORE MEccA ', PaorLo MERIALDO "2 PaoLO ATZENT ?, VALTER CRESCENZI 2
! D.ILF.A. — Universitd della Basilicata 2 D.ILA. - Universita di Roma Tre
via della Tecnica, 3 via della Vasca Navale, 79
85100 - Potenza, Italy 00146 Roma, Italy

[mecca,merialdo,atzeni,crescenz]@dia.uniroma3.it

ARANEUS PROJECT WORKING REPORT
AWR-1-99
(version 1.0 — March 9, 1999)

Abstract

Web sites are rapidly becoming a world-wide standard platform for information system develop-
ment. The paper reports on the work conducted in the last few years in the framework of the
ARANEUS project in the field, presenting models, tools, methodologies, techniques for Web design
and development, as well as ideas coming from a number of concrete experiences in developing
data-intensive Web sites using the system. We also discuss research directions we are following to
define a unified framework for data and application management on the Web.

1 Introduction

Web-Site development has recently imposed itself as a new and challenging database problem. This
has justified a number of research proposals coming from the database area (e.g., [11, 17, 10, 25, 23])
for data management in Web sites; other relevant works in the field have investigated the extension
of design methodologies to these sites, and their interaction with development tools [12, 18]. Indeed,
the notion of a Web site has recently evolved from a small, home-made collection of HTML pages into
a number of different forms, including rather complex and sophisticated information system. Given
the large number and diversity of Web sites, we find useful to classify them in categories, according
to their complexity in terms of data and applications (i.e., services), as shown in Figure 1.

1. we call Web-presence Sites those sites with low complexity both in terms of data and appli-
cations; these sites usually contain a small number of pages (in the order of the dozens), and
mainly serve for marketing purposes; we believe that a vast portion of Web sites do fall in this
category; however, given the relatively small size, these are usually made by hand, possibly with
the help of HTML editors or simple site-manager software;

2. the service-oriented sites are the ones mainly dedicated to some specific service. There are
several examples of these sites: one example are search engines; another typical example are
free email services, like HotMail [3]. In both cases, although the site may have a large back-end
database, the structure of the data and of the hypertext is quite simple (typically one single
class of objects), and the complexity is rather in the underlying applications that guarantee the
service;

3. catalogue (or data-intensive) sites are sites that publish many data, and therefore have a complex
hypertext structure, but offer little or no services. Academic sites — with data about people,

www.manaraa.com

Complexity
of Data

high| CATALOGUE WBIS
SITES

low | WEB-PRESENCE |SERVICE-ORIENTED|
SITES SITES

low high
Complexity of Applications

Figure 1: Classification of Web Sites

courses, research — are one example. In all these sites, the focus is mainly on organizing the
data in a browsable hypertext form, and on the maintenance of both the underlying data and
of the hypertext;

4. finally, the most intriguing class of sites are what we call Web-Based Information Systems, i.e.,
real information systems on the Web that offer access to complex data and at the same time
also provide sophisticated interactive services. Large electronic-commerce sites obviously fall in
this category, like also company information systems based on intranet platforms.

The classification is of course a bit crude: many sites may fall in between some of the categories above,
yet it serves the goal of the discussion. Of these four classes, Web-presence sites can be created and
maintained by hand, and usually don’t need the development of ad-hoc techniques. Service-oriented
sites are to be considered too application-specific to allow for a general treatment. We therefore will
concentrate mainly on catalogue sites and WBIS.

If developing and administering a catalogue site can in some way be considered as a typical
database problem, on the contrary, it is still unclear what should be the foundation for developing real
information systems on the Web, since a full-fledged proposal, encompassing all aspects of Web-based
information-system development — namely, data management techniques, application development
and the associated methodologies — is still missing.

In this paper, we report on the work we have carried on in the last few years in the framework of
the ARANEUS project, which brought us to develop a number of tools to serve as a basis for developing
Web applications. Most of the ideas incorporated in the system stem from a conspicuous development
activity we have conducted on large real-life Web sites in different domains, ranging from University
sites, to civil engineering, to non-profit organizations, for a total of several thousands Web pages. Such
an experience contributed to refine our approach, on the one side by highlighting the real challenges
that a system has to face in this field, and on the other side by somehow forcing us to pursue the
rapid development of user needs and market technology. In the paper, we first discuss our approach
to the development of data-intensive sites, illustrating the main components of our system and our
concrete experiences; then, we discuss some directions in which we are extending our work in order
to incorporate a broader support for WBIS.

The Web-site development software is part of a larger system, the ARANEUS Web-Base Manage-
ment System [21], which in addition incorporates tools to query and integrate both structured and
semistructured data; we will not report on this in the paper, but simply want to emphasize that
coupling data extraction with hypertext generation allows to develop a number of interesting applica-
tions, in which pieces of information are extracted at some sources, re-organized to create new sites,

www.manaraa.com

and these sites are not only browsed, but also possibly queried back by other applications. We refer
the reader to [1] for references on other aspects of the system.

2 Overview of the System
The main features of our approach are:

e it is based on a clear separation between four different levels, namely (i) data management, (i7)
hypertext structure , (ii1) graphical presentation and (iv) application development; the separation
is justified by the observation that these levels are largely independent, and should be possible
to change one without affecting the other ones; this makes the architecture of the system highly
modular, i.e., made of a number of interacting components, one for each level;

e the Web-site development phase is based on a specific design methodology, the ARANEUS Web-
Site Design Methodology [12], an evolution of the traditional Entity-Relationship database design
methodology, which reflects the separation of levels and helps the developer in the design,
implementation and maintenance phase;

e we use a formal data model, called ADM, for hypertext description; this has the advantage of
giving a compact and effective description of a site structure, in order to better reason on its
effectiveness; ADM is essentially an object-relational data model, with untyped links and union
types; an interesting feature is that, although developed independently, ADM represents a nice
abstraction of XML [7] modeling primitives, thus providing a natural basis for describing XML
data sources;

e the system allows for large flexibility in choosing the actual implementation for the site; in fact,
it can both produce virtual pages (i.e., pages generated on demand), or standard, materialized
HTML files; also, due to the separation of levels and the nature of the ADM data model , the
system can easily generate both plain HTML or XML sites with XSL style-sheets; the migration
from one platform to the other is completely transparent; in fact, of most of the sites we have
developed so far, we have both an HTML and an XML version available;

e the system is quite standard and portable; all parts of the system are written in Java; it interfaces
to any JDBC-enabled [4] database;

The system architecture we refer to in this paper is show in Figure 2 (dashed boxes correspond to
module currently under development). As it can be seen from the figure, the system interfaces with
a DBMS and with a HTTP Server. All functionalities can be accessed via a suitable user interface,
using which the developer can conduct all tasks related to site management. The core of the system
stands in the six internal modules, which we shall discuss in the following Sections.

The ADM OBJECT M ANAGER takes care of handling ADM objects and storing them in the database,
either relational or object-relational, as discussed in Section 3. The DBMS interface, presented in
Section 4, handles all communication with the external DBMS through SQL queries; it “incapsulates”
the DBMS in such a way that the overall architecture is independent on the specific DBMS, and can
be migrated easily from one platform to the other.

The core tools for site development, PENELOPE and TELEMACHUS, are discussed in Sections 5
and 6. PENELOPE is an SQL-like language based on a nested-object algebra for generating hypertext
views on a database; it is used to automatically generate HTML or XML pages starting from the
database content. TELEMACHUS handles the presentation, i.e., the graphical layout of documents;
it is based on a notion of style for pages and attributes inside pages, and can generate either HTML
formatting or XsL style-sheets.

The work of all modules above is somehow coordinated by HOMER, our case-tool for Web site
design and automatic development; as discussed in Section 7, Web developers can progressively design

www.manaraa.com

the Internet
HTTP
Server

_____________ oo,
]] fT--------ax 1
I I [
I I [

I —01 I
: DBMS TELEMACHUS 1 NEPTUNE 1 |
' | INTERFACE | D
| | | I I |
, I I CIIZIZILCLZIZZZIu
I I [
| 1 [

I I
| |aAbM OBJECT[—| PENELOPE 1 HOMER 1 |

I I
i | MANAGER | v
| R
I I
! | [[!
I I
I I
, WBMS USER INTERFACE \
-~ |
I I
I I

Web-Site Developer

Figure 2: Architecture of the ARANEUS WBMS

the site using a graphical interface, starting from database design, and then moving successive levels;
the design artifacts are then used as an input to the respective tools in order to proceed with the
actual site implementation.

Finally, in Section 8, we discuss how we are extending the system in order to design and develop
applications in the site. This extension is based on NEPTUNE, a Workflow-Management System: with
this approach, each service to be offered through a site is considered as a workflow to be handled by
NEPTUNE. The latter coordinates all activities in the workflow, and interacts with PENELOPE and
TELEMACHUS for generating pages. We also discuss how workflow management changes the overall
Web-site design methodology.

A distribution package containing part of the software described in this paper is available for
download on the ARANEUS Project Web site [1].

3 ADM OBJECT MANAGER

We use the ARANEUS Data Model (ADM) [11] to give an intensional description of a Web site, ab-
stracting the logical features of Web pages. In ADM each page is seen as a complex object, with an
identifier, the URL, and a set of attributes. Pages sharing the same structure are grouped in page-
schemes; a set of page-schemes corresponds to a site scheme. Attributes may be optional and have a
type, which can be either simple, i.e. mono-valued, or multi-valued. Simple types are TEXT, IMAGE,
and LINK. Complex attributes are based on a limited number of primitives, as follows: (i) structures,
i.e. typed tuples; (i1) union types, i.e., disjunctions of attributes; (iv) lists, i.e., ordered collections
of tuples (possibly nested); (v) forms; forms are seen in the model as “virtual” lists of tuples, with
a number of attributes (the form fields) of different types (text-areas, selections, radios, checkboxes
etc.), and an associated action, i.e., a link to some result page; the list is virtual in the sense that
values for the form attributes are not physically stored in the page, but rather have to be specified by
the user before submitting the form. Filling-out form fields and executing the form action is therefore
conceptually similar to selecting one tuple of values in a list of links.

Figure 3 shows a graphical representation of an ADM scheme corresponding to (a portion) of a
site describing a scientific conference, which we will be used as a reference example throughout the
paper. In the scheme, “stacks” are used to represent page-schemes, and edges denote links. Figure 3

www.manaraa.com

also contains an explanation of the other graphical primitives.

Conference-Hom ePage

o — Committee-Page
ToFCPage O L
Ifember] ist
“Program” = Hame =
ap-Page ToProgramPage O Eimail =
Ty o Affiliation =
oabte e st —
TollapPage 0 ToHomePage O——
FoomList (Externel
Room =
ToRoom ol
Program-Page v
Sessionlist
- — Legenda
aimne S
— FQ— ;
ROOH].'PEEE \ 4 g&}f = = A Text
ot =
Room = B B: Image
FoomName = FaperList " A List of:
ToFaper O
RoomA genda Title = } % (B, C)
. Sghor =
Dailysgenda | - L O—os L: Link
H o = .
ToPaper O Name
Title = Lccepted-Paper-Page
Authorlist Page-Scheme
[Author =
Title =
Authorlist “
Author /

P | affiliation

I Il
s

Ahatract

Figure 3: Example of ADM Scheme

There are two points we want to emphasize here. First, the use of the ADM data model plays a
cardinal role in our approach; in fact, it allows to give a compact, intensional description of a site
structure at an abstract level, and provides a basis for reasoning about the effectiveness of the chosen
hypertext organization; also, as it will be clear in the next Sections, the site scheme is essential in all
phases of the site design and implementation (all tools are based on that).

Second, it is worth noting that ADM is somehow at the crossroads of traditional database models
and XML. In fact, the fundamental modeling primitives of the model have a natural counterpart in the
ones that are typically offered by object-database systems, the main differences being the absence of
hierarchies and inheritance, and the presence of union types. Thus, ADM modeling primitives might
somehow be considered as a subset of ODMG [14] and SQL3 [6] data models, enriched with union

www.manaraa.com

types. At the same time, ADM can be considered as a logical abstraction of xmL [7]. If, in fact, XML
should rather be considered as a data format than as a data model, yet its modeling primitives do
correspond to the ones present in ADM: structures, possibly nested lists, disjunction, links. In this
respect, an XML DTD can be seen as a type declaration for a class of documents, which has a natural
counterpart in ADM page-schemes.

Special attention is to be devoted to links: links in XML are essentially untyped, since it is not
possible to constrain in XPOINTER [9] and XLINK [8] the type, i.e., DTD, of a link destination. Following
this we have decided to include both typed and untyped links in the data model, in the sense that a
link attribute may both have a give type for its destination, or a generic link type; a generic link may
have constraints on it, specifying partial type information. However, these ideas are more relevant in
the site querying and integration process than in the site development one, and we refer the reader
to a forthcoming paper.

4 DBMS INTERFACE

The DBMS Interface is based on JDBC-ODBC and uses SQL as a language. It is used to store
ADM objects in the external database, by decomposing them in flat tables. Note that, although
using a relational database as a back-end gives less flexibility than, for example, using a full-fledged
object-oriented database, still it has the great advantage of leveraging a wide-spread technology and
drastically cutting the site development costs; in this way, an organization willing to develop a Web
site doesn’t usually need to buy a new DBMS, and can use its own as a back-end.

When generating HTML pages, PENELOPE uses the interface to issue query to the database and
construct hypertext views, which are then translated into HTML or XML. It is worth noting that two
different approaches to Web publishing are possible in this context. Database products on the market
adopt pull techniques, in which pages contain calls to the DBMS, and, when the user requests a new
page, such calls are evaluated, the page is generated on the fly and returned to the browser. The
main advantage of this approach is that pages always reflect the most recent database state; however,
there are at least two limitations associated with it.

e First, if the underlying database has to be used also for other ends—for example, like a repository
for a company information system frequent accesses to the Web site may considerably increase
the load on the database and can slow down the overall performance; on the other side, creating a
new database especially intended for Web publishing purposes may not be economically feasible
and poses further problems to guarantee consistency between the two repositories.

e Second, the resulting Web site is strongly platform-dependent: the HTTP server needs a specific
DBMS as a back end to serve pages, which often contain non-standard tags to invoke the
execution of scripts; this means, for example, that such a site cannot be mirrored or distributed
over the network, nor moved to another platform without also migrating the DBMS.

An alternative is represented by a push approach, in which data are materialized in HTML files and
‘pushed’ to the site. This clearly solves the problems above, since the resulting site is standard and
the HTTP server works independently from the DBMS; however, in this case, the management of
pages in presence of updates is more complex; in fact, when the database is updated, also materialized
HTML files need to be correspondingly maintained to reflect the change.

Since push techniques are becoming increasingly popular on the Web due to the appearance of
channels, i.e., sites that periodically deliver pages or portions of sites directly to the client machine,
we decided to support both approaches: in a site, pages can be kept virtual, and generated on-the-fly,
or materialized in HTML files. As it will be discussed in Section 5, maintenance of materialized pages
is guaranteed by a suitable page-update language. Here we want to emphasize how the approach
of adopting a relational database and materializing pages in HTML files can drastically cut the site-
development costs. To give an idea of this, we mention that several large catalogue sites we have

www.manaraa.com

developed like, for example, the Faculty of Engineering Web Site at University of Basilicata [2], a
site of several hundred pages and several thousands accesses per year — use Microsoft Access [5] as a
back-end database. Pages are materialized, in order to reduce the database workload, and periodically
updated using the page-update language provided by PENELOPE.

5 PENELOPE

PENELOPE is a system for automatically generating complex Web sites starting from data managed
by a DBMS. Both XML and HTML can be used as target mark-up language. It is also worth saying
that the system supports both push and pull solutions: it can either generate and materialize Web
pages starting from the database content, or can be used to dynamically create pages upon request.

The site creation phase using PENELOPE takes as an input an ADM description of the target
hypertext, plus page-styles, as generated by TELEMACHUS (see Section 6). The structure of the target
Web site and the correspondence with the source database are described to the system by means of
a declarative language, the PENELOPE Definition Language (PDL). Based on such description, a

as well as the whole site.

In the following, first we present the basics of the PENELOPE Definition Language by means of
some examples, then introduce the language formal semantics; some advanced features of the language
are then briefly discussed; a presentation of the main statements of the PENELOPE Manipulation
Language concludes the section.

5.1 The PENELOPE Definition Language (PDL)

A PDL definition specifies how pages in the site are to be mapped onto the underlying database. It is
made of a site definition statement, followed by a collection of page-scheme definitions, one for each
page-scheme of the site. The site definition statement specifies (i) the root, that is, the base URL
of the target site, (i) the style of the site, i.e. a set of presentation directives, as it will be clear
in Section 6, and (i47) the data source (usually a ODBC or JDBC data source) where data to be
published are stored. The general form of a site definition statement is as follows:

SCHEME Address
[STYLE Style]
ON DataSource

Each page-scheme definition consists of a DEFINE-PAGE statement, which essentially specifies how
to fill-out pages based on attributes from tables (base relations or views) of the source database. In
order to correlate single pages and generate a complex Web site, a suitable URL invention mechanism,
borrowed from object-oriented databases, is used. URL invention is based on the use of local URLs,
which allow to identify new pages; they can be either constant strings, or strings built using the
function symbol URL from attributes in relations. For example result.html is a constant local URL,
whereas URL (<AuthorName>) denotes a local URL built from values of database attribute AuthorName.

A DEFINE-PAGE statement has the form:!

DEFINE-PAGE P
AS S
USING Ri,R>,....R,

where: (i) P is the page-scheme name; ; (ii) Ry, Ro,. .., R, are tables in the site data source (or SQL
views over it); and (7i7) S describes the page structure, by specifying the page attributes, their type,
and their correspondence with database attributes.

'The language includes other optional clauses, which however are not presented here for the sake of space.

www.manaraa.com

To illustrate the DEFINE-PAGE statement let us consider some examples. In particular, assume
our data source is a relational database, let us call it Conference, dealing with data for a scientific
conference, with the following relations (key attributes are underlined):

. Author (AuthorName, Email, Affiliation, Address);

. PCMember (PCMemberName, Email, Affiliation, IsChair, HomePage);

. OCMember (OCMemberName, Email, Affiliation, HomePage);

. Paper (PaperCode, Title, Abstract, ContactAuthorName, Accepted, SessionName);
. PaperAuthor (PaperCode, AuthorName);

. PaperToPCMemeber (PCMemberName, PaperCode);

~N O Ot = W N =

. Session(SessionName, Day, Hour, Room);

Consider page-scheme ACCEPTED-PAPER-PAGE in Figure 3. It contains two mono-valued attributes,
of type TEXT, i.e., the paper’s title and abstract, plus a multi-valued attribute, corresponding to the
list of authors. The following PDL statement is used to describe how instances of this page-scheme
have to be generated starting from data of the Conference database:

DEFINE-PAGE ACCEPTED-PAPER-PAGE

AS URL (<PaperCode>) ;
Title: TEXT <Title>;
AuthorList: LIST-0F (Author: TEXT <AuthorName>;
Affiliation:TEXT <Affiliation>;)
Abstract: TEXT <Abstract>;
USING PaperAuthor,
Author,
AcceptedPaper: (SELECT *
FROM Paper
WHERE Accepted = True)
END

It is easy to see that the statement closely resembles the page-scheme structure. The main part of
the statement is the AS clause, describing how to fill-out data in the page. In particular, this clause
specifies how to assign URLs to instances of the target page-scheme, and how to generate attribute
values for instances of the target page-scheme.

URLSs have to be generated by the system, and each time a page is created, a new, different URL is
needed. We use function terms to generate URLs; in the example, term URL (<PaperCode>) specifies
that the system has to generate an URL for each page, and that the URL must be uniquely associated
with the value of attribute PaperCode;? in this way, a different page will be created for each different
paper code.

The DEFINE-PAGE statement also describes how pages must be filled-out starting from data stored
in the source database. For each attribute of the page-scheme there is an item in the AS clause. For
each page instance, attribute values are taken from tables specified in the USING clause. In particular,
as it will be detailed below, tables in the USING clause are joined, and each page-scheme attribute
is associated with an attribute of the resulting relation, namely the one whose name is enclosed by
brackets (e.g. <Title>). For example, the definition of attribute Title of type TEXT specifies that
each page will report the paper title, as specified in the ADM scheme, and that the corresponding
values come from attribute Title. Note that, in the USING clause, both tables and SQL views can
be specified.

Let us consider another example, showing how local URLs are used to link pages together. The
following PDL statement specifies how page-scheme PROGRAM-PAGE, shown in Figure 3, has to be
created:

DEFINE-PAGE PROGRAM-PAGE
AS URL ("Program.html") ;

2This technique is inspired by the use of Skolemn functors to invent new OID’s in object-oriented databases [20].

www.manaraa.com

SessionList: LIST-0F (Name: TEXT <SessionName>;

Day: TEXT <Day>;
Hour: TEXT <Hour>;
Room: TEXT <Room>;

Paper-List:LIST-0F (ToPaper : LINK-TO ACCEPTED-PAPER-PAGE (
Title <Title>;
URL (<PaperCode>)) ;
Author-List LIST-O0F (Author: TEXT <Author>));
USING Session,
Author,
PaperAuthor,
AcceptedPaper: (SELECT *
FROM Paper
WHERE Accepted = True)
END

In this statement, we specify that, coherently with the page-scheme structure, each page must
contain a list of sessions; each session is composed by a list of papers, each one with its title and
authors. Note that, for each paper we need a link that leads to the corresponding page—the one
defined in the previous PDL statement. In the statement above, for each item in list PaperList, we
use the paper title as anchor of the link; then, to link the appropriate pages, we use function term
URL (<Title>) as a value for the link reference; this enforces the correct reference as long as URLs for
paper pages are generated using the same function term.

5.2 PDL Semantics

To understand the mapping between the values of relations specified in the USING clause, and the
values of the pages to be generated, we now develop a formal semantics for the PENELOPE Definition
Language.

The semantics of a PDL statement can be easily explained algebraically. In particular, each
statement in the language maps to an expression in a nested relational algebra, enriched by a specific
operator for URL invention. The nested relational algebra we refer to is that defined by Roth et al.
n [24] for the class of nested relations. The operators of nested algebra work on nested relations:
operators U,N, —, m, p,0, are natural extensions of traditional operators of the usual relational
algebra, and their definition is not recalled here. A specific operator of nested relational algebra is
the nesting operator, v, whose definition is recalled hereafter. Let R(AB) be a nested relation scheme
associated with nested relation r, with A and B denoting sets of attributes. The nesting of r along
Y = B, denoted by vy selects the set of tuples of r equals on A and compacts them into tuples
where the set of their different values on B becomes values of the complex attribute Y.

To describe semantics of a PDL statement, we need to extend the nested relational algebra above
by a further operator, denoted URL, for describing the URL invention mechanism. URL allows to
introduce new attributes into a nested relation as follows. Let r; be a nested relation with scheme R;;
operator URL applied to relation r; takes a number of arguments, c¢1,...cy, B1,..., By, where each
¢; (n > 0) is a constant value, and each B; (m > 0) is an attribute in R;; we use a Skolem function
that, for each tuple ¢ in r;, returns a unique identifier, denoted by fch---cn,Bl,---,Bm)(t)’ constructed
starting from constant values cy, ... c, and values ¢.By,...,t.B,,. Then, URLA¢,,. c,.B,.. B, 1% adds
a new attribute, A, to R;; for each tuple ¢ of r;, the value of A is fe, . .B1,...Bm(t)-

When the PENELOPE system executes a PDL statement, first it performs a natural join of the
tables specified in the USING clause. Second, all the needed URL attributes are added to the resulting
relation. The URL values are generated by the U RL operator from the values of its actual parameter
(i.e. a constant string, or a value of the database). Then, to get rid of all the attributes that are not
useful for page instance generation, i.e. those database attributes that are not associated to any page
attribute in the page-scheme, an ordinary projection operation is performed. Finally, the resulting
relation is transformed in a set of nested tuples: nesting operations are performed starting from inner

www.manaraa.com

ADM attributes of type LIST-0F. Each nested tuple of the resulting relation corresponds to a site
page.?

With respect to the definition of page-scheme ACCEPTED-PAPER-PAGE given above, the PENELOPE
system, at execution time, performs the following expression:

V AuthorList«— AuthorName, A}ﬁliation(

TURL, Title, AuthorName, Affiliation, Abstmct(
URLyRL« PaperCode(Paper Author <1 Author > Accepted Paper)))

5.3 PDL Advanced Features

So far, we have seen the main basic features of PDL. Actually, the language also allows for specifying
the structure of sophisticated pages, including, for instance, click-map attributes, links to existing
pages, and forms. In the following we briefly present these aspects.

Virtual Pages and Modifiers As it was discussed above, PENELOPE supports both push and
pull generation. The standard URL-invention mechanism creates file names and materializes pages in
HTML files; however, in some cases a better option is to leave pages virtual, and generate them on
the fly upon user request. To specify that a page is to be generated by running a script, instead of
being materialized in a file, the URL() function has a modifier, "cgi”. Consider, for example, page
ACCEPTED-PAPER-PAGE above. If we want it to be a virtual page, the corresponding definition is to
be changed as follows:

DEFINE-PAGE ACCEPTED-PAPER-PAGE

AS URL("cgi",<PaperCode>) ;
Title: TEXT <Title>;
AuthorList: LIST-0F (Author: TEXT <AuthorName>;
Affiliation: TEXT <Affiliation>;)
Abstract: TEXT <Abstract>;
USING PaperAuthor,
Author,
AcceptedPaper: (SELECT *
FROM Paper

WHERE Accepted = True)
END

The only difference with respect to the previous statement stands in the URL() clause. The
presence of the "cgi” modifier tells to the system that it does not have to generate the actual HTML or
XML code for this page, but rather a script, that will be invoked in order to generate the page upon
request. This script will have an input parameter, i.e., the paper code; when invoked, it will extract
the data from the database and return the page source on the standard input.

It is worth noting that the use of these virtual pages is completely handled by the system, which
automatically produces all code necessary to generate the page. Also, a virtual page may embed links
to both virtual and materialized pages, thus making the integration of push and pull quite seamless.
Of course, a virtual page can be easily referenced from another page by using the ”cgi” modifier in
the URL clause of the link attribute. In this way the system knows that a script is to be run in order
to retrieve the link destination page.

The use of modifiers, like ”cgi” above, allows for a wider range of link types. There is, for example,
a "mailto” modifier that can be used in order to produce a link to an e-mail address. A similar syntax
can be used in order to introduce links to offsets (i.e., links to some specific portion of a page, also
called internal links). Another interesting possibility is that of referencing pages that are external to
the site. These are called ezternal pages in PENELOPE. However, for the sake of space we choose not
to develop further on these issues here.

% Actually, to improve performances, there is a constraint on nested attributes: for each level of nesting, all non-nested
attributes must come from a single table or view in the USING clause.

10

www.manaraa.com

Defining Click-Maps An effective way of rendering links in Web pages can be implemented using
HTML click-maps. Note that click-maps, from the data-model perspective, are simply lists of links
with an associated image; deciding to implement the links as a click-map is rather an implementation
choice. The PENELOPE system allows for an easy and intuitive management of pages containing this
kind of linking mechanism. To define a page have to be created with a click-map, a specific syntax is
provided by PDL. In particular, PDL allows to specify MAP attributes. A MAP attribute is made of two
parts: (i) an image (i.e. an attribute of type IMAGE), used as a basis for the map, and (7i) a link (i.e.,
an attribute of type LINK-T0), used to associate portions of the image with links to other pages.

Assume we want to generate a page with a click-map showing a map of the building where the
conference is held, with links to scheduled events in each room (see page-scheme MAP-PAGE in Figure 3.
Assume we have stored in our database a table MapTable containing the name of the file to use as a
map, plus coordinates of box-shaped areas corresponding to rooms, as follows:

H MapFileName ‘ Room ‘ Coords H
../icons/5Stars.jpg CongressHall 20, 13, 22, 15
../icons/5Stars.jpg NorthHall 18, 8, 21, 15
../icons/5Stars.jpg SouthHall 9, 33, 11, 35

The following PDL statement will generate the map in the unique instance of page-scheme MapPage:

DEFINE-PAGE MAP-PAGE

AS URL ("map.html") ;
ConferenceMap: MAP (Map : IMAGE <MapFileName>;
ToRoom: LINK-TO RoomPage (
Coords : TEXT <BoxCoords>;
URL (<Room>)) ;
USING MapTable
END

When the PENELOPE system interprets the statement above, a piece of HTML like the following is
generated:

<HTML> ...

<MAP NAME="ConferenceMap'>
<AREA SHAPE="RECT" COORDS="20, 13, 22, 15" REF="../RoomPage/CongressHall.html">
<AREA SHAPE="RECT" COORDS="18, 8, 21, 15" HREF="../RoomPage/NorthHall.html">...
<AREA SHAPE="RECT" COORDS="9, 33, 11, 35" HREF="../RoomPage/SouthHall.html">

</MAP>

 ...

</HTML>

The picture of the conference place is displayed as a sensitive map, and by clicking on a region
associated with a room the page presenting activities scheduled for that room is reached.

Defining Forms Another fundamental construct in HTML pages are forms. Forms are particularly
important in all cases in which a page is used to collect some user input and then run a procedure on
the server. They are therefore essential to run a workflow. Embedding a form in a page generated
by PENELOPE has a number of subtleties, related to the various kinds of fields that a form can have
(text areas, radios, checkboxes, selections etc..). However, the basic idea is the following: the PDL
specification of a form is made of: (i) a bunch of attributes, one for each field in the form; attributes
can either be empty (like text-areas), or allow a selection among a number of values from some
database attribute; (i¢) a number of buttons, one for each action associated with the form; (iii) the
URLs of a number of scripts to be run when submitting the form, one for each button.

11

www.manaraa.com

Suppose, for example, we need to have a page in our conference Web site to collect paper reviews
by PC members. A form to collect electronic reviews might be described as follows:*

DEFINE-PAGE REVIEW-PAGE

AS URL(cgi,"review.html");
ReviewForm: FORM (Action: TEXT "cgi/CheckReview.bat";
Method: TEXT "POST";
Go: SUBMIT "Submit Review";
Restart: RESET ;

ReviewerName: SELECT (items : LIST-OF (
Name : OPTION = <PCMemberName>;));

PaperCode: SELECT (items : LIST-OF (
Code : OPTION = <PaperCode>;));
GradeReject: RADIO "Reject";
GradeNeutral: RADIO "Neutral" CHECKED;
GradeWAccept: RADIO "Weak Accept";
GradeAccept: RADIO "Accept";
Review: TEXTAREA, SIZE "15" "80";);
USING PCMember, Paper
END

The page will contain a post form that executes a ”CheckReview.bat” script in directory ”cgi”.
It will contain two buttons, one to submit and the other to reset. There are essentially four fields
in the form: the ReviewerName and PaperCode, both to be selected among a list of alternatives
corresponding to values in the database; the grade, a radio to check (in this simple example, either
"Reject” or ”Weak Accept” or ”Accept”); and finally the actual Review, a free text to be inserted in
a textarea.

It can be seen that the syntax for describing forms can in some cases be quite elaborate. In fact,
forms are hardly coded in PDL by hand. Still, forms are a fundamental mechanism in interconnecting
PENELOPE and NEPTUNE, as it will be clear in the following sections.

5.4 The PENELOPE Manipulation Language

The creation of pages, as defined in the PDL source code is performed by means of instructions of
the PENELOPE Manipulation Language (PML). PML provides two main instructions, Generate and
Remove, which can refer to (i) the whole site; (i7) all instances of a page-scheme; or (iii) pages that
satisfy a condition in a Where clause.

The general form of a PML statement is as follows:

Generate|Remove P
Where C

where P is a page-scheme name, and C is a boolean predicate over some attributes of P.

Let us consider an example; assume we are interested in generating instances of page-scheme
ACCEPTED-PAPER-PAGE; in particular, suppose we want to generate pages corresponding to papers by
a given author; then the following PML statement has to be executed by the system:

Generate ACCEPTED-PAPER-PAGE
Where AuthorName = "Tom Scott"

It is important to observe that PML is an effective tool also for maintaining the site. In fact, it
allows to update pages, during the life-cycle of the site. A suitable algorithm for incremental page
maintenance has been defined by Sindoni in [26]. The page-maintenance algorithm takes as input a
database update, and returns a minimal set of PML instructions needed to correspondingly update

*The actual syntax has been simplified in some details for clarity’s sake.

12

www.manaraa.com

the pages. In essence, when an update to the database is requested to the system, it automatically
generates a mized transaction, in which SQL updates to database tables and PML updates to pages
are combined in order to guarantee consistency between the two. The transaction is then atomically
executed against the database and the Web site.

6 TELEMACHUS

One of the most difficult and underestimated tasks in developing a Web site consists in handling the
graphical layout of pages. Nevertheless, people willing to create their sites are often more worried
about having an appealing presentation than about data management issues; this is not surprising,
since Web sites are becoming a prominent commercial vehicle, and therefore need to attract customers.
This makes design and implementation of presentation a large part of the site life-cycle.

Experience tells that there are at least three fundamental requirements in this field: (i) first, it is
very useful to have rapid prototyping tools, i.e., tools that to produce some approximate layout for all
pages in a site; this allows to concentrate on the other aspects of site design with little initial effort on
the layout; (i7) then, at a subsequent step, one should have flexible tools to refine presentation details
and obtain an appealing final result. Finally, (7i7) presentation is hardly developed by coding; it is
much more convenient to work on ezample HTML pages, that can be displayed using a standard browser
to get an immediate feedback, and then let the system derive the necessary code from examples.

These ideas have inspired TELEMACHUS, our tool for presentation design and development. In
the previous Section we have seen that PENELOPE somehow assumes that the PDL site definition
code also associates some form of style to each page; when the system builds instances of a given
page-scheme, attribute values are formatted according to the specified graphical directives. These
styles are designed with the help of TELEMACHUS.

6.1 Styles and Formatting

Before actually describing how TELEMACHUS works, let us mention what is a style in our approach.
A fundamental notion is the one of attribute style, which specifies how values of a given attribute
must be formatted in a page. To be able to produce sophisticated formatting, an attribute style is
made of two arbitrary pieces of HTML code °, called prefiz format string and suffiz format string,
between which the attribute values will be enclosed when generating pages.® To give an example,
consider attribute Room in page-scheme PROGRAM-PAGE in Figure 3, corresponding to the room in
which a conference session will be held. To obtain a simple, boldface style and color red for room
names in pages, we may specify the following attribute style:

ROOM: [] []

In this way, for each room name say “Panoramic Room” a piece of HTML code of the form:
Panoramic Room will be produced in the page. If, however, we want
a more elaborate formatting, in which the room name is written in a red and ” Arial”’-boldface, and
preceded by an arrow image, we may use the following style (the HTML table is needed to correctly
align image and text):

ROOM: [<TABLE CELLPADDING="3" BORDER="O" ROWS="1" COLS="2">
<TR><TD WIDTH="30"></TD>
<TD>]
[</TD></TR></TABLE>]

SWe mainly refer to HTML, but TELEMACHUS can easily handle any other mark-up language.
SFor some types of attributes, TELEMACHUS also allows to specify an infiz format string; to keep the development
simple, we do not elaborate further on this.

13

www.manaraa.com

/* Page-Style for Page-scheme PROGRAM-PAGE */

HEADER: [<HTML>
<HEAD>This is the HTML header</HEAD>
<TITLE>This is the page title</TITLE>
<BODY BACKGROUND="../icons/na.gif">

<HR>]
SESSIONLIST: [<TABLE>] [</TABLE>]
SESSIONLIST.NAME: [<TR><TD> ... 1 [... </TD>]

SESSIONLIST.ROOM: [<TD><TABLE CELLPADDING="3" BORDER="O" ROWS="1" COLS="2">
<TR><TD WIDTH="30"></TD>
<TD>]
[</TD></TR></TABLE></TD></TR>]

PAPERLIST: [] []
FOOTER: [<HR>
<CENTER>

Site created by the

Araneus WBMS

<P>WebMaster
</CENTER>

</BODY>

</HTML>]

Figure 4: An example of style produced by TELEMACHUS for page-scheme PROGRAM-PAGE

It can be seen how such a simple mechanism is in fact very flexible. A page-style specifies all
format directives for a given page-scheme; it contains a set of attribute styles, one for each attribute
in the ADM scheme of the page, plus a header section and a footer section. Header and footer specify
graphical features to be associated with the page itself, rather than with a specific attribute, like,
for example, page background and banners. Like attribute styles, also header and footer consist of
arbitrary pieces of HTML code. Figure 4 shows a fragment of a possible style for page PROGRAM-PAGE
above (the style has been simplified for presentation purposes). When generating instances of a given
page-scheme, PENELOPE loads the corresponding page-style” and formats data according to it: each
page has the header and footer defined in the style, and each attribute value is enclosed in between
its format strings.

Actually, the styling mechanism provided by TELEMACHUS is even finer. In order to guarantee
a good compromise between rapid prototyping and accuracy in the final product, beside attribute
styles and page styles, we also have a notion of site-styles. Site-styles are used at the beginning of
the presentation design phase, in order to produce a first version of page-styles based on formatting
choices that will be common to the whole site. This is very useful in order to speed-up the layout
phase: in fact, usually pages in a site are organized according to some common lines — i.e., background
color, font face, font color, link format etc. One example of site-style is reported in Figure 5. It can
be seen that a site-style is essentially a generic page-style, in the sense that it specifies one header
and one footer common to all page-schemes in the site, plus a number of formats, each common
to all attributes of a give type text, image, link, list etc. in the site. A site may have one or
more site-styles like the one above. These are used by TELEMACHUS as starting directives in order to
automatically generate a first version of page-styles for the different page-schemes. Then, page-styles
can be further customized, by changing header, footer, and attribute styles, in order to vary the
layout from one page to the other.

"For page-schemes that do not have an associated page-style, PENELOPE adopts a default style.

14

www.manaraa.com

/* Site-Style "sample.sty" */

HEADER: [<HTML>
<HEAD>This is the HTML header</HEAD>
<TITLE>This is the page title</TITLE>
<BODY BACKGROUND="../icons/na.gif">

<HR>
]
TEXT: [] []
IMAGE: [1 1]
LINK: [<I>] [</I>]
LIST: [<TABLE>] [</TABLE>]
LIST-TUPLE: [<TR>] [</TR>]
LIST-TUPLE-ELEMENT: [<TD>] [</TD>]
FOOTER: [<HR>
<CENTER>

Site created by the

Araneus WBMS

<P>WebMaster
</CENTER>

</BODY>

</HTML>]

Figure 5: An example of site style

6.2 Working with TELEMACHUS

We are now ready to discuss how TELEMACHUS works. In essence, the presentation design phase goes
from rather general and undistinguished formatting (as specified by site-styles) to very particular
formatting (obtained by customizing attribute-styles in page-styles). However, as already discussed
above, in this process the designer hardly wants to write style code as the one shown in examples
above, but rather work with sample HTML pages, to be able to check the chosen layout without the
need of generating the actual site.

TELEMACHUS has been conceived to support this process. It makes styles completely transparent
to the designer: it allows to write sample HTML pages, from which styles are automatically produced;
these HTML pages are called templates. A page-template is a prototypical HTML page; it does not
contain actual data, but place-holders. For example, a template for page-scheme PROGRAM-PAGE above
will not contain actual room numbers, but rather strings corresponding to attribute names, of the
form $Room. Similarly, a site-template is a sample page in which, instead of actual data, strings
corresponding to types are reported, like $Text, $Link etc. Beside this detail, a template is a fully
standard HTML page, which can be edited using the designer’s preferred editor (the only limitation
being that place-holders cannot be changed) to refine the presentation, and browsed using any HTML
browser; since browsing the template closely resembles browsing the corresponding pages, the designer
has an immediate feedback on what the corresponding pages in the site will look like. This makes
templates a much more convenient work tool than a style.

Based on these ideas, the presentation design process is sketched in Figure 6. In essence, users
only work with templates, and TELEMACHUS takes care of generating the corresponding styles.

e The starting point is one (or more) site-templates, i.e., one sample page showing how text,
images, links, lists etc. are to be formatted, as specified in the PDL site description; the site-
template can be derived from some pre-existing HTML page, or created from scratch, and pro-
gressively refined until the layout is satisfactory.

e When the site-template is ready, TELEMACHUS is invoked. It will analyze the template and
generate from it the corresponding site-style, according to the syntax shown in Figure 5. This

15

www.manaraa.com

SITE TEMPLATE

all

TELEMACHUS editing

SITE STYLE

TELEMAV \

PAGE TEMPLATE 1| |PAGE TEMPLATE 2| |PAGE TEMPLATE n|
il il all
TELEMACHUS editing editing editing
PAGE STYLE 1 _‘ PAGE STYLE 2 _‘ PAGE STYLE n _‘
[[[
PENELOPE
S1TE PAGES

Figure 6: Presentation Design using TELEMACHUS

site-style is then used again by TELEMACHUS in order to produce a first version of the page-
templates, one for each page-scheme in the PDL statement. Being all generated on the basis of
the same site-style, these templates have a rather homogeneous layout.

e Then, site-templates are analyzed one by one (if needed), and edited in order to refine and
customize attribute layout. This may be needed because, for example, some page-schemes must
have different headers and footers (different background, different icons), and their attributes
specific formatting (like attribute Room in page-scheme PROGRAM-PAGE above).

e When this editing phase is completed, TELEMACHUS can be invoked again in order to produce
page-styles from page-templates. If the target mark-up language is XML, TELEMACHUS also
generates an XSL style-sheet for each page-scheme, on the basis of the page-style: for each
attribute (i.e., XML element), an XSL rule is generated, that specifies how to embed the value of
the element within the pair of formatting strings in the style.

Note that this process is such that presentation maintenance can be handled independently from the
other ones in the site. If, in fact, some page-style is to be changed to improve the site layout, it
is sufficient to modify the corresponding page-template and then let TELEMACHUS produce the new
style, which can then be used to generate the new pages.

The actual prototype of TELEMACHUS also provides advanced features, like styles with parameters
and incremental generation of styles. For a detailed treatment of these issue, we refer the reader to
the TELEMACHUS user manual.

7 HOMER

It can be seen from the previous sections that designing and implementing a site is a rather complex
task, that involves several aspects and requires to deal with data under different perspectives, map-
ping the one onto the others. For large and complex Web sites, the complexity of the design and
maintenance process can be reduced only through the adoption of a systematic design methodology,

16

www.manaraa.com

i.e., a set of models and design steps that lead from a conceptual specification of the domain of interest
to the implementation of the actual site.

We have developed a thorough methodological framework for designing data-intensive Web sites,
the ARANEUS methodology [12]. A key feature of our approach to Web site design that we want
to emphasize here is the clear distinction among different levels: (i) database design; (ii) hypertext
design; (iii) presentation design. The separation is justified by the observation that the four levels
are largely independent. In essence, by adopting the methodology, designers start from a conceptual
description of the site domain (an Entity-Relationship scheme) and through a set of precise steps
progressively moves to database logical design (this produces the database relational scheme), then
hypertext design (this produces the site ADM scheme), and finally presentation design (producing
page-templates).

To simplify this design process, as well as to automate the implementation phase based on the site
design artifacts, we have developed HOMER, a case tool conceived to support the designer through
the successive design steps. This is a natural complement of our approach, in which the site design
evolves through different levels and different descriptions, each based on a formal model. HOMER
has two main facilities: first, a graphical user-interface; second, a module to automatically generate
code to be run by the different tools in order to implement the actual site. Brieflyy, HOMER works
as follows. First, the system takes as input a declarative specification of the starting conceptual
scheme of data and automatically translates it into a logical (relational) database scheme. Then, its
graphical interface helps the designer in specifying transformations according to which constructs of
the database conceptual scheme have to be manipulated in order to obtain the desired hypertext. By
progressively applying these transformations the designer shapes the ADM scheme of the resulting site.
Once the ADM description for the site has been generated, based on the specified transformations,
HOMER automatically generates the PDL code to be used as an input the page-creation phase.

8 NEPTUNE: Towards Web-Based Information Systems

It can be seen how the tools described in sections above represent a flexible platform for developing
data-intensive sites. Still, they provide little support for adding services and application to the site.
Our goal is therefore to extend the framework with models and tools to handle application as a further
level in the design and implementation phase. In this respect, workflows [19] represent a promising
direction. Born to automate business processes i.e., coordinated procedures and activities aimed
at realizing some business objective — workflow management system are a natural solution to deliver
services on the Web [16, 22]. Moreover, in adopting workflows we can leverage on a rather consolidated
platform in terms of design and modeling [15, 13]. Our approach is to extend the framework developed
in the previous sections with NEPTUNE, a workflow management system conceived to cooperate with
other system tools. In this framework, the development of complex information systems is based on
the following simple ideas.

A site is made of several intermixed portions: (i) a catalogue portion, of data-access pages, used to
access and browse the site underlying database; (i7) one or more workflow-ezecution portions, giving
access to one or more services through the execution of a workflow. To give an example, consider the
conference site introduced above; most probably the site will have a public part, publishing data about
accepted papers, program, organization, and a private part to handle the review process; the latter
is naturally implemented as a workflow. A similar argument also holds for most electronic commerce
sites. The two different portions are seamlessly combined in the site, in the sense that users may want
to browse some data while running the workflow, or starting a workflow after browsing the site.

All the logics of the workflow is handled by NEPTUNE, which generates Java code to coordinate
the various activities, assign tasks to actors, and authenticate accesses to the workflow, if necessary;
the site is used as an interface to the workflow, i.e., all the interaction between actors and workflow
management system happens through pages in the site; these pages are generate via a client-server
interaction between NEPTUNE on the client side and PENELOPE plus TELEMACHUS on the server

17

www.manaraa.com

1. DATABASE
CONCEPTUAL DESIGN
(ER Scheme)

2. DATABASE
T.oG1CAL DESIGN

/ (Relational Scheme)

3. WorkFLoOwW
DESIGN \

I 4. HYPERTEXT

CONCEPTUAL DESIGN

|

5. HYPERTEXT

LOGICAL DESIGN
6. PRESENTATION
(ADM Scheme)
DESIGN

(Page Templates)

7. SITE GENERATION
(DBMS, NEPTUNE, PENELOPE, TELEMACHUS)

Figure 7: The ARANEUS Web—Site Design Methodology

side, and contain suitable forms to collect user-inputs and execute tasks. Communication between
the site and the workflow management system is based on the database, which is used to store both
the workflow state and user inputs.

We want to stress the fact that, as well as the data-access part, also the workflow-execution
part of the site needs an hypertext and presentation design phase, and is fully integrated with the
data-access part, to which it can be linked. The introduction of the workflow therefore changes the
overall design process. Figure 7 shows an extended version of our methodology for WBIS design
and implementation. Details about the database and hypertext design phases can be found in [12].
Workflows are designed and described along the lines of [15, 13]. It can be seen how the four different
levels (data, application, hypertext and presentation) are clearly distinguished, and at the same
time interact in the overall design and implementation process. Although the implementation of
NEPTUNE is still under development, our first experiences with the prototype of NEPTUNE have
shown the benefits of this approach. The site is in fact a natural platform for implementing the
workflow interface, whereas the design and development of a workflow nicely fits inside the design
and implementation framework presented above.

References

[1] The ARANEUS Project Home Page.
http://www.dia.uniroma3.it/Araneus
http://www.difa.unibas.it/Araneus.

Faculty of Engineering at University of Basilicata. http://www.ing.unibas.it. In italian.

S P s N

The HotMail web site. http://www.hotmail. com.
JDBC Database Access API. http://www.javasoft.com/products/jdbc/jdbc.html.

Ot

The Microsoft Web Site. http://www.microsoft.com.

The SQL standards page. http://www.jcc.com/sql_stds.html.

18

www.manaraa.com

[7]

[18]

[19]

Extensible Markup Language (XML) 1.0 specification. = W3C Recommendation, February 1998.
http://www.w3c.org/TR/REC-xml.

XML Linking Language (XLink). W3C Working Draft, March 1998. http://www.w3c.org/TR/WD-x1ink.
XML Pointer Language (XPointer). W3C Working Draft, March 1998. http://www.w3c.org/TR/WD-xptr.

G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring documents, databases and Webs. In
Fourteenth IEEE International Conference on Data Engineering (ICDE’98), Orlando, Florida, 1998.

P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In International Conf. on Very Large Data
Bases (VLDB’97), Athens, Greece, August 26-29, pages 206-215, 1997. http://www.dia.uniroma3.it/-
Araneus/.

P. Atzeni, G. Mecca, and P. Merialdo. Design and maintenance of data-intensive Web sites. In VI Intl.
Conference on Extending Database Technology (EDBT’98), Valencia, Spain, March 23-27, 1998.

F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In 14th International
Conference on Object-Oriented and Entity-Relationship Modelling, (OOFER’95) Gold Coast, Australia,
December 12-15, 1995. Lecture Notes in Computer Science, Vol. 1021, Springer-Verlag, pages 341 354,
1995.

R. G. G. Cattel. The Object Database Standard ODMG-93. Morgan Kaufmann Publishers, San Francisco,
CA, 1994.

Workflow Management Coalition. The workflow reference model. WfMC Document n. TC00-1003, http:/-
www.wfmc.org, 1995.

Workflow Management Coalition. Workflow and internet: Catalysts for radical change. WfMC White
Paper, http:/www.wfmc.org, 1998.

M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with Strudel: Experiences
with a web-site management system. In ACM SIGMOD International Conf. on Management of Data
(SIGMOD’98), Seattle, Washington, pages 414 425, 1998.

P. Fraternali and P. Paolini. A conceptual model and a tool environment for developing more scalable,
dynamic, and customizable Web applications. In VI Intl. Conference on Extending Database Technology
(EDBT’98), Valencia, Spain, March 23-27, 1998.

D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of Workflow Management: From process
modeling to infrastructure for automation. Journal on Distributed and Parallel Database Systems, 3(2),
1995.

R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identifiers. In Sizteenth
International Conference on Very Large Data Bases, Brisbane (VLDB’90), pages 455 468, 1990.

G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The ARANEUS Web-Base Management System.
In ACM SIGMOD International Conf. on Management of Data (SIGMOD’98), Seattle, Washington, pages
544-546, 1998. Exhibition Program. http://www.dia.uniroma3.it/Araneus/.

J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H. Singh. WebWork: METEOR;’s web-based
workflow management system. Journal of Intelligent Information Systems, 10(2):185 215, 1998.

F. Paradis and A. M. Vercoustre. A language for publishing virtual documents on the Web. In Proceedings
of the Workshop on the Web and Databases (WebDB’98) (in conjunction with EDBT’98) http://wuw.-
dia.uniroma3.it/webdb98, 1998.

M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and calculus for =1NF relational databases.
ACM Transactions on Database Systems, 13(4):389 417, December 1988.

G. Simeon and S. Cluet. Using YAT to build a Web server. In Proceedings of the Workshop on the Web and
Databases (WebDB’98) (in conjunction with EDBT’98) http://www.dia.uniroma3.it/webdb98, 1998.

G. Sindoni. Incremental maintenance of hypertext views. In Proceedings of the Workshop on the Web and
Databases (WebDB’98) (in conjunction with EDBT’98) http://wuw.dia.uniroma3.it/webdb98, 1998.

19

www.manaraa.com

