
www.manaraa.com

The Araneus Guide to Web-Site DevelopmentGiansalvatore Mecca 1, Paolo Merialdo 1;2, Paolo Atzeni 2, Valter Crescenzi 21 D.I.F.A. { Universit�a della Basilicata 2 D.I.A. { Universit�a di Roma Trevia della Tecnica, 3 via della Vasca Navale, 7985100 - Potenza, Italy 00146 { Roma, Italy[mecca,merialdo,atzeni,crescenz]@dia.uniroma3.itAraneus Project Working ReportAWR-1-99(version 1.0 { March 9, 1999)AbstractWeb sites are rapidly becoming a world-wide standard platform for information system develop-ment. The paper reports on the work conducted in the last few years in the framework of theAraneus project in the �eld, presenting models, tools, methodologies, techniques for Web designand development, as well as ideas coming from a number of concrete experiences in developingdata-intensive Web sites using the system. We also discuss research directions we are following tode�ne a uni�ed framework for data and application management on the Web.1 IntroductionWeb-Site development has recently imposed itself as a new and challenging database problem. Thishas justi�ed a number of research proposals coming from the database area (e.g., [11, 17, 10, 25, 23])for data management in Web sites; other relevant works in the �eld have investigated the extensionof design methodologies to these sites, and their interaction with development tools [12, 18]. Indeed,the notion of a Web site has recently evolved from a small, home-made collection of html pages intoa number of di�erent forms, including rather complex and sophisticated information system. Giventhe large number and diversity of Web sites, we �nd useful to classify them in categories, accordingto their complexity in terms of data and applications (i.e., services), as shown in Figure 1.1. we call Web-presence Sites those sites with low complexity both in terms of data and appli-cations; these sites usually contain a small number of pages (in the order of the dozens), andmainly serve for marketing purposes; we believe that a vast portion of Web sites do fall in thiscategory; however, given the relatively small size, these are usually made by hand, possibly withthe help of html editors or simple site-manager software;2. the service-oriented sites are the ones mainly dedicated to some speci�c service. There areseveral examples of these sites: one example are search engines; another typical example arefree email services, like HotMail [3]. In both cases, although the site may have a large back-enddatabase, the structure of the data and of the hypertext is quite simple (typically one singleclass of objects), and the complexity is rather in the underlying applications that guarantee theservice;3. catalogue (or data-intensive) sites are sites that publish many data, and therefore have a complexhypertext structure, but o�er little or no services. Academic sites { with data about people,1

www.manaraa.com

6
-

of Data
Complexity of ApplicationsWeb-PresenceCatalogue WBISService-Orientedlow highlowhighComplexity

SitesSites Sites
Figure 1: Classi�cation of Web Sitescourses, research { are one example. In all these sites, the focus is mainly on organizing thedata in a browsable hypertext form, and on the maintenance of both the underlying data andof the hypertext;4. �nally, the most intriguing class of sites are what we call Web-Based Information Systems, i.e.,real information systems on the Web that o�er access to complex data and at the same timealso provide sophisticated interactive services. Large electronic-commerce sites obviously fall inthis category, like also company information systems based on intranet platforms.The classi�cation is of course a bit crude: many sites may fall in between some of the categories above,yet it serves the goal of the discussion. Of these four classes, Web-presence sites can be created andmaintained by hand, and usually don't need the development of ad-hoc techniques. Service-orientedsites are to be considered too application-speci�c to allow for a general treatment. We therefore willconcentrate mainly on catalogue sites and WBIS.If developing and administering a catalogue site can in some way be considered as a typicaldatabase problem, on the contrary, it is still unclear what should be the foundation for developing realinformation systems on the Web, since a full-
edged proposal, encompassing all aspects of Web-basedinformation-system development { namely, data management techniques, application developmentand the associated methodologies { is still missing.In this paper, we report on the work we have carried on in the last few years in the framework ofthe Araneus project, which brought us to develop a number of tools to serve as a basis for developingWeb applications. Most of the ideas incorporated in the system stem from a conspicuous developmentactivity we have conducted on large real-life Web sites in di�erent domains, ranging from Universitysites, to civil engineering, to non-pro�t organizations, for a total of several thousands Web pages. Suchan experience contributed to re�ne our approach, on the one side by highlighting the real challengesthat a system has to face in this �eld, and on the other side by somehow forcing us to pursue therapid development of user needs and market technology. In the paper, we �rst discuss our approachto the development of data-intensive sites, illustrating the main components of our system and ourconcrete experiences; then, we discuss some directions in which we are extending our work in orderto incorporate a broader support for WBIS.The Web-site development software is part of a larger system, the Araneus Web-Base Manage-ment System [21], which in addition incorporates tools to query and integrate both structured andsemistructured data; we will not report on this in the paper, but simply want to emphasize thatcoupling data extraction with hypertext generation allows to develop a number of interesting applica-tions, in which pieces of information are extracted at some sources, re-organized to create new sites,2

www.manaraa.com

and these sites are not only browsed, but also possibly queried back by other applications. We referthe reader to [1] for references on other aspects of the system.2 Overview of the SystemThe main features of our approach are:� it is based on a clear separation between four di�erent levels, namely (i) data management, (ii)hypertext structure , (iii) graphical presentation and (iv) application development; the separationis justi�ed by the observation that these levels are largely independent, and should be possibleto change one without a�ecting the other ones; this makes the architecture of the system highlymodular, i.e., made of a number of interacting components, one for each level;� the Web-site development phase is based on a speci�c design methodology, the Araneus Web-Site Design Methodology [12], an evolution of the traditional Entity-Relationship database designmethodology, which re
ects the separation of levels and helps the developer in the design,implementation and maintenance phase;� we use a formal data model, called adm, for hypertext description; this has the advantage ofgiving a compact and e�ective description of a site structure, in order to better reason on itse�ectiveness; adm is essentially an object-relational data model, with untyped links and uniontypes; an interesting feature is that, although developed independently, adm represents a niceabstraction of xml [7] modeling primitives, thus providing a natural basis for describing xmldata sources;� the system allows for large
exibility in choosing the actual implementation for the site; in fact,it can both produce virtual pages (i.e., pages generated on demand), or standard, materializedhtml �les; also, due to the separation of levels and the nature of the adm data model , thesystem can easily generate both plain html or xml sites with xsl style-sheets; the migrationfrom one platform to the other is completely transparent; in fact, of most of the sites we havedeveloped so far, we have both an html and an xml version available;� the system is quite standard and portable; all parts of the system are written in Java; it interfacesto any JDBC-enabled [4] database;The system architecture we refer to in this paper is show in Figure 2 (dashed boxes correspond tomodule currently under development). As it can be seen from the �gure, the system interfaces witha DBMS and with a HTTP Server. All functionalities can be accessed via a suitable user interface,using which the developer can conduct all tasks related to site management. The core of the systemstands in the six internal modules, which we shall discuss in the following Sections.The adm Object Manager takes care of handling adm objects and storing them in the database,either relational or object-relational, as discussed in Section 3. The DBMS interface, presented inSection 4, handles all communication with the external DBMS through SQL queries; it \incapsulates"the DBMS in such a way that the overall architecture is independent on the speci�c DBMS, and canbe migrated easily from one platform to the other.The core tools for site development, Penelope and Telemachus, are discussed in Sections 5and 6. Penelope is an SQL-like language based on a nested-object algebra for generating hypertextviews on a database; it is used to automatically generate html or xml pages starting from thedatabase content. Telemachus handles the presentation, i.e., the graphical layout of documents;it is based on a notion of style for pages and attributes inside pages, and can generate either htmlformatting or xsl style-sheets.The work of all modules above is somehow coordinated by Homer, our case-tool for Web sitedesign and automatic development; as discussed in Section 7, Web developers can progressively design3

www.manaraa.com

�� ��
WBMS User Interface

DBMSInterface PenelopeTelemachus HomerNeptuneadm ObjectManager
HTTPServerthe Internet

� �
gWeb-Site Developer-�
Figure 2: Architecture of the Araneus WBMSthe site using a graphical interface, starting from database design, and then moving successive levels;the design artifacts are then used as an input to the respective tools in order to proceed with theactual site implementation.Finally, in Section 8, we discuss how we are extending the system in order to design and developapplications in the site. This extension is based on Neptune, a Work
ow-Management System: withthis approach, each service to be o�ered through a site is considered as a work
ow to be handled byNeptune. The latter coordinates all activities in the work
ow, and interacts with Penelope andTelemachus for generating pages. We also discuss how work
ow management changes the overallWeb-site design methodology.A distribution package containing part of the software described in this paper is available fordownload on the Araneus Project Web site [1].3 adm Object ManagerWe use the Araneus Data Model (adm) [11] to give an intensional description of a Web site, ab-stracting the logical features of Web pages. In adm each page is seen as a complex object, with anidenti�er, the url, and a set of attributes. Pages sharing the same structure are grouped in page-schemes; a set of page-schemes corresponds to a site scheme. Attributes may be optional and have atype, which can be either simple, i.e. mono-valued, or multi-valued. Simple types are TEXT, IMAGE,and LINK. Complex attributes are based on a limited number of primitives, as follows: (i) structures,i.e. typed tuples; (ii) union types, i.e., disjunctions of attributes; (iv) lists, i.e., ordered collectionsof tuples (possibly nested); (v) forms; forms are seen in the model as \virtual" lists of tuples, witha number of attributes (the form �elds) of di�erent types (text-areas, selections, radios, checkboxesetc.), and an associated action, i.e., a link to some result page; the list is virtual in the sense thatvalues for the form attributes are not physically stored in the page, but rather have to be speci�ed bythe user before submitting the form. Filling-out form �elds and executing the form action is thereforeconceptually similar to selecting one tuple of values in a list of links.Figure 3 shows a graphical representation of an adm scheme corresponding to (a portion) of asite describing a scienti�c conference, which we will be used as a reference example throughout thepaper. In the scheme, \stacks" are used to represent page-schemes, and edges denote links. Figure 34

www.manaraa.com

also contains an explanation of the other graphical primitives.

Figure 3: Example of adm SchemeThere are two points we want to emphasize here. First, the use of the adm data model plays acardinal role in our approach; in fact, it allows to give a compact, intensional description of a sitestructure at an abstract level, and provides a basis for reasoning about the e�ectiveness of the chosenhypertext organization; also, as it will be clear in the next Sections, the site scheme is essential in allphases of the site design and implementation (all tools are based on that).Second, it is worth noting that adm is somehow at the crossroads of traditional database modelsand xml. In fact, the fundamental modeling primitives of the model have a natural counterpart in theones that are typically o�ered by object-database systems, the main di�erences being the absence ofhierarchies and inheritance, and the presence of union types. Thus, adm modeling primitives mightsomehow be considered as a subset of ODMG [14] and SQL3 [6] data models, enriched with union5

www.manaraa.com

types. At the same time, adm can be considered as a logical abstraction of xml [7]. If, in fact, xmlshould rather be considered as a data format than as a data model, yet its modeling primitives docorrespond to the ones present in adm: structures, possibly nested lists, disjunction, links. In thisrespect, an xml dtd can be seen as a type declaration for a class of documents, which has a naturalcounterpart in adm page-schemes.Special attention is to be devoted to links: links in xml are essentially untyped, since it is notpossible to constrain in xpointer [9] and xlink [8] the type, i.e., dtd, of a link destination. Followingthis we have decided to include both typed and untyped links in the data model, in the sense that alink attribute may both have a give type for its destination, or a generic link type; a generic link mayhave constraints on it, specifying partial type information. However, these ideas are more relevant inthe site querying and integration process than in the site development one, and we refer the readerto a forthcoming paper.4 DBMS InterfaceThe DBMS Interface is based on JDBC-ODBC and uses SQL as a language. It is used to storeadm objects in the external database, by decomposing them in
at tables. Note that, althoughusing a relational database as a back-end gives less
exibility than, for example, using a full-
edgedobject-oriented database, still it has the great advantage of leveraging a wide-spread technology anddrastically cutting the site development costs; in this way, an organization willing to develop a Website doesn't usually need to buy a new DBMS, and can use its own as a back-end.When generating html pages, Penelope uses the interface to issue query to the database andconstruct hypertext views, which are then translated into html or xml. It is worth noting that twodi�erent approaches to Web publishing are possible in this context. Database products on the marketadopt pull techniques, in which pages contain calls to the DBMS, and, when the user requests a newpage, such calls are evaluated, the page is generated on the
y and returned to the browser. Themain advantage of this approach is that pages always re
ect the most recent database state; however,there are at least two limitations associated with it.� First, if the underlying database has to be used also for other ends|for example, like a repositoryfor a company information system|frequent accesses to the Web site may considerably increasethe load on the database and can slow down the overall performance; on the other side, creating anew database especially intended for Web publishing purposes may not be economically feasibleand poses further problems to guarantee consistency between the two repositories.� Second, the resulting Web site is strongly platform-dependent: the HTTP server needs a speci�cDBMS as a back end to serve pages, which often contain non-standard tags to invoke theexecution of scripts; this means, for example, that such a site cannot be mirrored or distributedover the network, nor moved to another platform without also migrating the DBMS.An alternative is represented by a push approach, in which data are materialized in html �les and`pushed' to the site. This clearly solves the problems above, since the resulting site is standard andthe HTTP server works independently from the DBMS; however, in this case, the management ofpages in presence of updates is more complex; in fact, when the database is updated, also materializedhtml �les need to be correspondingly maintained to re
ect the change.Since push techniques are becoming increasingly popular on the Web due to the appearance ofchannels, i.e., sites that periodically deliver pages or portions of sites directly to the client machine,we decided to support both approaches: in a site, pages can be kept virtual, and generated on-the-
y,or materialized in html �les. As it will be discussed in Section 5, maintenance of materialized pagesis guaranteed by a suitable page-update language. Here we want to emphasize how the approachof adopting a relational database and materializing pages in html �les can drastically cut the site-development costs. To give an idea of this, we mention that several large catalogue sites we have6

www.manaraa.com

developed { like, for example, the Faculty of Engineering Web Site at University of Basilicata [2], asite of several hundred pages and several thousands accesses per year { use Microsoft Access [5] as aback-end database. Pages are materialized, in order to reduce the database workload, and periodicallyupdated using the page-update language provided by Penelope.5 PenelopePenelope is a system for automatically generating complex Web sites starting from data managedby a DBMS. Both xml and html can be used as target mark-up language. It is also worth sayingthat the system supports both push and pull solutions: it can either generate and materialize Webpages starting from the database content, or can be used to dynamically create pages upon request.The site creation phase using Penelope takes as an input an adm description of the targethypertext, plus page-styles, as generated by Telemachus (see Section 6). The structure of the targetWeb site and the correspondence with the source database are described to the system by means ofa declarative language, the Penelope De�nition Language (pdl). Based on such description, amanipulation language, the Penelope Manipulation Language (pml), allows to create speci�c pages,as well as the whole site.In the following, �rst we present the basics of the Penelope De�nition Language by means ofsome examples, then introduce the language formal semantics; some advanced features of the languageare then brie
y discussed; a presentation of the main statements of the Penelope ManipulationLanguage concludes the section.5.1 The Penelope De�nition Language (pdl)A pdl de�nition speci�es how pages in the site are to be mapped onto the underlying database. It ismade of a site de�nition statement, followed by a collection of page-scheme de�nitions, one for eachpage-scheme of the site. The site de�nition statement speci�es (i) the root, that is, the base urlof the target site, (ii) the style of the site, i.e. a set of presentation directives, as it will be clearin Section 6, and (iii) the data source (usually a ODBC or JDBC data source) where data to bepublished are stored. The general form of a site de�nition statement is as follows:SCHEME Address[STYLE Style]ON DataSourceEach page-scheme de�nition consists of a DEFINE-PAGE statement, which essentially speci�es howto �ll-out pages based on attributes from tables (base relations or views) of the source database. Inorder to correlate single pages and generate a complex Web site, a suitable url invention mechanism,borrowed from object-oriented databases, is used. url invention is based on the use of local urls,which allow to identify new pages; they can be either constant strings, or strings built using thefunction symbol URL from attributes in relations. For example result.html is a constant local url,whereas URL(<AuthorName>) denotes a local URL built from values of database attribute AuthorName.A DEFINE-PAGE statement has the form:1DEFINE-PAGE PAS SUSING R1; R2; : : : ; Rnwhere: (i) P is the page-scheme name; ; (ii) R1; R2; : : : ; Rn are tables in the site data source (or SQLviews over it); and (iii) S describes the page structure, by specifying the page attributes, their type,and their correspondence with database attributes.1The language includes other optional clauses, which however are not presented here for the sake of space.7

www.manaraa.com

To illustrate the DEFINE-PAGE statement let us consider some examples. In particular, assumeour data source is a relational database, let us call it Conference, dealing with data for a scienti�cconference, with the following relations (key attributes are underlined):1. Author(AuthorName, Email, Affiliation, Address);2. PCMember(PCMemberName, Email, Affiliation, IsChair, HomePage);3. OCMember(OCMemberName, Email, Affiliation, HomePage);4. Paper(PaperCode, Title, Abstract, ContactAuthorName, Accepted, SessionName);5. PaperAuthor(PaperCode, AuthorName);6. PaperToPCMemeber(PCMemberName, PaperCode);7. Session(SessionName, Day, Hour, Room);Consider page-scheme ACCEPTED-PAPER-PAGE in Figure 3. It contains two mono-valued attributes,of type TEXT, i.e., the paper's title and abstract, plus a multi-valued attribute, corresponding to thelist of authors. The following pdl statement is used to describe how instances of this page-schemehave to be generated starting from data of the Conference database:DEFINE-PAGE ACCEPTED-PAPER-PAGEAS URL(<PaperCode>);Title: TEXT <Title>;AuthorList: LIST-OF (Author: TEXT <AuthorName>;Affiliation:TEXT <Affiliation>;)Abstract: TEXT <Abstract>;USING PaperAuthor,Author,AcceptedPaper: (SELECT *FROM PaperWHERE Accepted = True)ENDIt is easy to see that the statement closely resembles the page-scheme structure. The main part ofthe statement is the AS clause, describing how to �ll-out data in the page. In particular, this clausespeci�es how to assign urls to instances of the target page-scheme, and how to generate attributevalues for instances of the target page-scheme.urls have to be generated by the system, and each time a page is created, a new, di�erent url isneeded. We use function terms to generate urls; in the example, term URL(<PaperCode>) speci�esthat the system has to generate an url for each page, and that the url must be uniquely associatedwith the value of attribute PaperCode;2 in this way, a di�erent page will be created for each di�erentpaper code.The DEFINE-PAGE statement also describes how pages must be �lled-out starting from data storedin the source database. For each attribute of the page-scheme there is an item in the AS clause. Foreach page instance, attribute values are taken from tables speci�ed in the USING clause. In particular,as it will be detailed below, tables in the USING clause are joined, and each page-scheme attributeis associated with an attribute of the resulting relation, namely the one whose name is enclosed bybrackets (e.g. <Title>). For example, the de�nition of attribute Title of type TEXT speci�es thateach page will report the paper title, as speci�ed in the adm scheme, and that the correspondingvalues come from attribute Title. Note that, in the USING clause, both tables and SQL views canbe speci�ed.Let us consider another example, showing how local urls are used to link pages together. Thefollowing pdl statement speci�es how page-scheme PROGRAM-PAGE, shown in Figure 3, has to becreated:DEFINE-PAGE PROGRAM-PAGEAS URL("Program.html");2This technique is inspired by the use of Skolem functors to invent new OID's in object-oriented databases [20].8

www.manaraa.com

SessionList: LIST-OF (Name: TEXT <SessionName>;Day: TEXT <Day>;Hour: TEXT <Hour>;Room: TEXT <Room>;Paper-List:LIST-OF (ToPaper : LINK-TO ACCEPTED-PAPER-PAGE (Title <Title>;URL(<PaperCode>));Author-List LIST-OF (Author: TEXT <Author>));USING Session,Author,PaperAuthor,AcceptedPaper: (SELECT *FROM PaperWHERE Accepted = True)ENDIn this statement, we specify that, coherently with the page-scheme structure, each page mustcontain a list of sessions; each session is composed by a list of papers, each one with its title andauthors. Note that, for each paper we need a link that leads to the corresponding page|the onede�ned in the previous pdl statement. In the statement above, for each item in list PaperList, weuse the paper title as anchor of the link; then, to link the appropriate pages, we use function termURL(<Title>) as a value for the link reference; this enforces the correct reference as long as urls forpaper pages are generated using the same function term.5.2 pdl SemanticsTo understand the mapping between the values of relations speci�ed in the USING clause, and thevalues of the pages to be generated, we now develop a formal semantics for the Penelope De�nitionLanguage.The semantics of a pdl statement can be easily explained algebraically. In particular, eachstatement in the language maps to an expression in a nested relational algebra, enriched by a speci�coperator for url invention. The nested relational algebra we refer to is that de�ned by Roth et al.in [24] for the class of nested relations. The operators of nested algebra work on nested relations:operators [;\;�; �; �; �; ./ are natural extensions of traditional operators of the usual relationalalgebra, and their de�nition is not recalled here. A speci�c operator of nested relational algebra isthe nesting operator, �, whose de�nition is recalled hereafter. Let R(AB) be a nested relation schemeassociated with nested relation r, with A and B denoting sets of attributes. The nesting of r alongY = B, denoted by �Y B selects the set of tuples of r equals on A and compacts them into tupleswhere the set of their di�erent values on B becomes values of the complex attribute Y .To describe semantics of a pdl statement, we need to extend the nested relational algebra aboveby a further operator, denoted URL, for describing the url invention mechanism. URL allows tointroduce new attributes into a nested relation as follows. Let ri be a nested relation with scheme Ri;operator URL applied to relation ri takes a number of arguments, c1; : : : cn; B1; : : : ; Bm, where eachci (n � 0) is a constant value, and each Bj (m � 0) is an attribute in Ri; we use a Skolem functionthat, for each tuple t in ri, returns a unique identi�er, denoted by fc1;:::cn;B1;:::;Bm)(t), constructedstarting from constant values c1; : : : cn and values t:B1; : : : ; t:Bm. Then, urlA c1;:::cn;B1;:::;BmRi addsa new attribute, A, to Ri; for each tuple t of ri, the value of A is fc1;:::cn;B1;:::;Bm(t).When the Penelope system executes a pdl statement, �rst it performs a natural join of thetables speci�ed in the USING clause. Second, all the needed url attributes are added to the resultingrelation. The url values are generated by the URL operator from the values of its actual parameter(i.e. a constant string, or a value of the database). Then, to get rid of all the attributes that are notuseful for page instance generation, i.e. those database attributes that are not associated to any pageattribute in the page-scheme, an ordinary projection operation is performed. Finally, the resultingrelation is transformed in a set of nested tuples: nesting operations are performed starting from inner9

www.manaraa.com

adm attributes of type LIST-OF. Each nested tuple of the resulting relation corresponds to a sitepage.3With respect to the de�nition of page-scheme ACCEPTED-PAPER-PAGE given above, the Penelopesystem, at execution time, performs the following expression:�AuthorList AuthorName, A�liation(�URL, Title, AuthorName, A�liation, Abstract(URLURL PaperCode(PaperAuthor ./ Author ./ AcceptedPaper)))5.3 pdl Advanced FeaturesSo far, we have seen the main basic features of pdl. Actually, the language also allows for specifyingthe structure of sophisticated pages, including, for instance, click-map attributes, links to existingpages, and forms. In the following we brie
y present these aspects.Virtual Pages and Modi�ers As it was discussed above, Penelope supports both push andpull generation. The standard url-invention mechanism creates �le names and materializes pages inhtml �les; however, in some cases a better option is to leave pages virtual, and generate them onthe
y upon user request. To specify that a page is to be generated by running a script, instead ofbeing materialized in a �le, the url() function has a modi�er, "cgi". Consider, for example, pageACCEPTED-PAPER-PAGE above. If we want it to be a virtual page, the corresponding de�nition is tobe changed as follows:DEFINE-PAGE ACCEPTED-PAPER-PAGEAS URL("cgi",<PaperCode>);Title: TEXT <Title>;AuthorList: LIST-OF (Author: TEXT <AuthorName>;Affiliation: TEXT <Affiliation>;)Abstract: TEXT <Abstract>;USING PaperAuthor,Author,AcceptedPaper: (SELECT *FROM PaperWHERE Accepted = True)ENDThe only di�erence with respect to the previous statement stands in the url() clause. Thepresence of the "cgi" modi�er tells to the system that it does not have to generate the actual html orxml code for this page, but rather a script, that will be invoked in order to generate the page uponrequest. This script will have an input parameter, i.e., the paper code; when invoked, it will extractthe data from the database and return the page source on the standard input.It is worth noting that the use of these virtual pages is completely handled by the system, whichautomatically produces all code necessary to generate the page. Also, a virtual page may embed linksto both virtual and materialized pages, thus making the integration of push and pull quite seamless.Of course, a virtual page can be easily referenced from another page by using the "cgi" modi�er inthe url clause of the link attribute. In this way the system knows that a script is to be run in orderto retrieve the link destination page.The use of modi�ers, like "cgi" above, allows for a wider range of link types. There is, for example,a "mailto" modi�er that can be used in order to produce a link to an e-mail address. A similar syntaxcan be used in order to introduce links to o�sets (i.e., links to some speci�c portion of a page, alsocalled internal links). Another interesting possibility is that of referencing pages that are external tothe site. These are called external pages in Penelope. However, for the sake of space we choose notto develop further on these issues here.3Actually, to improve performances, there is a constraint on nested attributes: for each level of nesting, all non-nestedattributes must come from a single table or view in the USING clause.10

www.manaraa.com

De�ning Click-Maps An e�ective way of rendering links in Web pages can be implemented usinghtml click-maps. Note that click-maps, from the data-model perspective, are simply lists of linkswith an associated image; deciding to implement the links as a click-map is rather an implementationchoice. The Penelope system allows for an easy and intuitive management of pages containing thiskind of linking mechanism. To de�ne a page have to be created with a click-map, a speci�c syntax isprovided by pdl. In particular, pdl allows to specify MAP attributes. A MAP attribute is made of twoparts: (i) an image (i.e. an attribute of type IMAGE), used as a basis for the map, and (ii) a link (i.e.,an attribute of type LINK-TO), used to associate portions of the image with links to other pages.Assume we want to generate a page with a click-map showing a map of the building where theconference is held, with links to scheduled events in each room (see page-scheme MAP-PAGE in Figure 3.Assume we have stored in our database a table MapTable containing the name of the �le to use as amap, plus coordinates of box-shaped areas corresponding to rooms, as follows:MapFileName Room Coords../icons/5Stars.jpg CongressHall 20, 13, 22, 15../icons/5Stars.jpg NorthHall 18, 8, 21, 15.../icons/5Stars.jpg SouthHall 9, 33, 11, 35The following pdl statement will generate the map in the unique instance of page-scheme MapPage:DEFINE-PAGE MAP-PAGEAS URL("map.html");ConferenceMap: MAP (Map : IMAGE <MapFileName>;ToRoom: LINK-TO RoomPage (Coords : TEXT <BoxCoords>;URL(<Room>));USING MapTableENDWhen the Penelope system interprets the statement above, a piece of html like the following isgenerated:<HTML> ...<MAP NAME="ConferenceMap"><AREA SHAPE="RECT" COORDS="20, 13, 22, 15" REF="../RoomPage/CongressHall.html"><AREA SHAPE="RECT" COORDS="18, 8, 21, 15" HREF="../RoomPage/NorthHall.html">...<AREA SHAPE="RECT" COORDS="9, 33, 11, 35" HREF="../RoomPage/SouthHall.html"></MAP> ...</HTML>The picture of the conference place is displayed as a sensitive map, and by clicking on a regionassociated with a room the page presenting activities scheduled for that room is reached.De�ning Forms Another fundamental construct in html pages are forms. Forms are particularlyimportant in all cases in which a page is used to collect some user input and then run a procedure onthe server. They are therefore essential to run a work
ow. Embedding a form in a page generatedby Penelope has a number of subtleties, related to the various kinds of �elds that a form can have(text areas, radios, checkboxes, selections etc..). However, the basic idea is the following: the pdlspeci�cation of a form is made of: (i) a bunch of attributes, one for each �eld in the form; attributescan either be empty (like text-areas), or allow a selection among a number of values from somedatabase attribute; (ii) a number of buttons, one for each action associated with the form; (iii) theurls of a number of scripts to be run when submitting the form, one for each button.11

www.manaraa.com

Suppose, for example, we need to have a page in our conference Web site to collect paper reviewsby PC members. A form to collect electronic reviews might be described as follows:4DEFINE-PAGE REVIEW-PAGEAS URL(cgi,"review.html");ReviewForm: FORM (Action: TEXT "cgi/CheckReview.bat";Method: TEXT "POST";Go: SUBMIT "Submit Review";Restart: RESET ;ReviewerName: SELECT (items : LIST-OF (Name : OPTION = <PCMemberName>;));PaperCode: SELECT (items : LIST-OF (Code : OPTION = <PaperCode>;));GradeReject: RADIO "Reject";GradeNeutral: RADIO "Neutral" CHECKED;GradeWAccept: RADIO "Weak Accept";GradeAccept: RADIO "Accept";Review: TEXTAREA, SIZE "15" "80";);USING PCMember, PaperENDThe page will contain a post form that executes a "CheckReview.bat" script in directory "cgi".It will contain two buttons, one to submit and the other to reset. There are essentially four �eldsin the form: the ReviewerName and PaperCode, both to be selected among a list of alternativescorresponding to values in the database; the grade, a radio to check (in this simple example, either"Reject" or "Weak Accept" or "Accept"); and �nally the actual Review, a free text to be inserted ina textarea.It can be seen that the syntax for describing forms can in some cases be quite elaborate. In fact,forms are hardly coded in pdl by hand. Still, forms are a fundamental mechanism in interconnectingPenelope and Neptune, as it will be clear in the following sections.5.4 The Penelope Manipulation LanguageThe creation of pages, as de�ned in the pdl source code is performed by means of instructions ofthe Penelope Manipulation Language (pml). pml provides two main instructions, Generate andRemove, which can refer to (i) the whole site; (ii) all instances of a page-scheme; or (iii) pages thatsatisfy a condition in a Where clause.The general form of a pml statement is as follows:Generate|Remove PWhere Cwhere P is a page-scheme name, and C is a boolean predicate over some attributes of P .Let us consider an example; assume we are interested in generating instances of page-schemeACCEPTED-PAPER-PAGE; in particular, suppose we want to generate pages corresponding to papers bya given author; then the following pml statement has to be executed by the system:Generate ACCEPTED-PAPER-PAGEWhere AuthorName = "Tom Scott"It is important to observe that pml is an e�ective tool also for maintaining the site. In fact, itallows to update pages, during the life-cycle of the site. A suitable algorithm for incremental pagemaintenance has been de�ned by Sindoni in [26]. The page-maintenance algorithm takes as input adatabase update, and returns a minimal set of pml instructions needed to correspondingly update4The actual syntax has been simpli�ed in some details for clarity's sake.12

www.manaraa.com

the pages. In essence, when an update to the database is requested to the system, it automaticallygenerates a mixed transaction, in which SQL updates to database tables and pml updates to pagesare combined in order to guarantee consistency between the two. The transaction is then atomicallyexecuted against the database and the Web site.6 TelemachusOne of the most di�cult and underestimated tasks in developing a Web site consists in handling thegraphical layout of pages. Nevertheless, people willing to create their sites are often more worriedabout having an appealing presentation than about data management issues; this is not surprising,since Web sites are becoming a prominent commercial vehicle, and therefore need to attract customers.This makes design and implementation of presentation a large part of the site life-cycle.Experience tells that there are at least three fundamental requirements in this �eld: (i) �rst, it isvery useful to have rapid prototyping tools, i.e., tools that to produce some approximate layout for allpages in a site; this allows to concentrate on the other aspects of site design with little initial e�ort onthe layout; (ii) then, at a subsequent step, one should have
exible tools to re�ne presentation detailsand obtain an appealing �nal result. Finally, (iii) presentation is hardly developed by coding; it ismuch more convenient to work on example html pages, that can be displayed using a standard browserto get an immediate feedback, and then let the system derive the necessary code from examples.These ideas have inspired Telemachus, our tool for presentation design and development. Inthe previous Section we have seen that Penelope somehow assumes that the pdl site de�nitioncode also associates some form of style to each page; when the system builds instances of a givenpage-scheme, attribute values are formatted according to the speci�ed graphical directives. Thesestyles are designed with the help of Telemachus.6.1 Styles and FormattingBefore actually describing how Telemachus works, let us mention what is a style in our approach.A fundamental notion is the one of attribute style, which speci�es how values of a given attributemust be formatted in a page. To be able to produce sophisticated formatting, an attribute style ismade of two arbitrary pieces of html code 5, called pre�x format string and su�x format string,between which the attribute values will be enclosed when generating pages.6 To give an example,consider attribute Room in page-scheme PROGRAM-PAGE in Figure 3, corresponding to the room inwhich a conference session will be held. To obtain a simple, boldface style and color red for roomnames in pages, we may specify the following attribute style:ROOM: [] []In this way, for each room name { say \Panoramic Room" { a piece of html code of the form:Panoramic Roomwill be produced in the page. If, however, we wanta more elaborate formatting, in which the room name is written in a red and "Arial"-boldface, andpreceded by an arrow image, we may use the following style (the html table is needed to correctlyalign image and text):ROOM: [<TABLE CELLPADDING="3" BORDER="0" ROWS="1" COLS="2"><TR><TD WIDTH="30"></TD><TD>][</TD></TR></TABLE>]5We mainly refer to html, but Telemachus can easily handle any other mark-up language.6For some types of attributes, Telemachus also allows to specify an in�x format string; to keep the developmentsimple, we do not elaborate further on this. 13

www.manaraa.com

/* Page-Style for Page-scheme PROGRAM-PAGE */HEADER: [<HTML><HEAD>This is the HTML header</HEAD><TITLE>This is the page title</TITLE><BODY BACKGROUND="../icons/na.gif"><HR>]SESSIONLIST: [<TABLE>] [</TABLE>]SESSIONLIST.NAME: [<TR><TD> ...] [... </TD>]...SESSIONLIST.ROOM: [<TD><TABLE CELLPADDING="3" BORDER="0" ROWS="1" COLS="2"><TR><TD WIDTH="30"></TD><TD>][</TD></TR></TABLE></TD></TR>]PAPERLIST: [] []...FOOTER: [<HR><CENTER>
Site created by theAraneus WBMS
<P>WebMaster</CENTER></BODY></HTML>]Figure 4: An example of style produced by Telemachus for page-scheme PROGRAM-PAGEIt can be seen how such a simple mechanism is in fact very
exible. A page-style speci�es allformat directives for a given page-scheme; it contains a set of attribute styles, one for each attributein the adm scheme of the page, plus a header section and a footer section. Header and footer specifygraphical features to be associated with the page itself, rather than with a speci�c attribute, like,for example, page background and banners. Like attribute styles, also header and footer consist ofarbitrary pieces of html code. Figure 4 shows a fragment of a possible style for page PROGRAM-PAGEabove (the style has been simpli�ed for presentation purposes). When generating instances of a givenpage-scheme, Penelope loads the corresponding page-style7 and formats data according to it: eachpage has the header and footer de�ned in the style, and each attribute value is enclosed in betweenits format strings.Actually, the styling mechanism provided by Telemachus is even �ner. In order to guaranteea good compromise between rapid prototyping and accuracy in the �nal product, beside attributestyles and page styles, we also have a notion of site-styles. Site-styles are used at the beginning ofthe presentation design phase, in order to produce a �rst version of page-styles based on formattingchoices that will be common to the whole site. This is very useful in order to speed-up the layoutphase: in fact, usually pages in a site are organized according to some common lines { i.e., backgroundcolor, font face, font color, link format etc. One example of site-style is reported in Figure 5. It canbe seen that a site-style is essentially a generic page-style, in the sense that it speci�es one headerand one footer common to all page-schemes in the site, plus a number of formats, each commonto all attributes of a give type { text, image, link, list etc. { in the site. A site may have one ormore site-styles like the one above. These are used by Telemachus as starting directives in order toautomatically generate a �rst version of page-styles for the di�erent page-schemes. Then, page-stylescan be further customized, by changing header, footer, and attribute styles, in order to vary thelayout from one page to the other.7For page-schemes that do not have an associated page-style, Penelope adopts a default style.14

www.manaraa.com

/* Site-Style "sample.sty" */HEADER: [<HTML><HEAD>This is the HTML header</HEAD><TITLE>This is the page title</TITLE><BODY BACKGROUND="../icons/na.gif"><HR>]TEXT: [] []IMAGE: [] []LINK: [<I>] [</I>]LIST: [<TABLE>] [</TABLE>]LIST-TUPLE: [<TR>] [</TR>]LIST-TUPLE-ELEMENT: [<TD>] [</TD>]FOOTER: [<HR><CENTER>
Site created by theAraneus WBMS
<P>WebMaster</CENTER></BODY></HTML>] Figure 5: An example of site style6.2 Working with TelemachusWe are now ready to discuss how Telemachus works. In essence, the presentation design phase goesfrom rather general and undistinguished formatting (as speci�ed by site-styles) to very particularformatting (obtained by customizing attribute-styles in page-styles). However, as already discussedabove, in this process the designer hardly wants to write style code as the one shown in examplesabove, but rather work with sample html pages, to be able to check the chosen layout without theneed of generating the actual site.Telemachus has been conceived to support this process. It makes styles completely transparentto the designer: it allows to write sample html pages, from which styles are automatically produced;these html pages are called templates. A page-template is a prototypical html page; it does notcontain actual data, but place-holders. For example, a template for page-scheme PROGRAM-PAGE abovewill not contain actual room numbers, but rather strings corresponding to attribute names, of theform $Room. Similarly, a site-template is a sample page in which, instead of actual data, stringscorresponding to types are reported, like $Text, $Link etc. Beside this detail, a template is a fullystandard html page, which can be edited using the designer's preferred editor (the only limitationbeing that place-holders cannot be changed) to re�ne the presentation, and browsed using any htmlbrowser; since browsing the template closely resembles browsing the corresponding pages, the designerhas an immediate feedback on what the corresponding pages in the site will look like. This makestemplates a much more convenient work tool than a style.Based on these ideas, the presentation design process is sketched in Figure 6. In essence, usersonly work with templates, and Telemachus takes care of generating the corresponding styles.� The starting point is one (or more) site-templates, i.e., one sample page showing how text,images, links, lists etc. are to be formatted, as speci�ed in the pdl site description; the site-template can be derived from some pre-existing html page, or created from scratch, and pro-gressively re�ned until the layout is satisfactory.� When the site-template is ready, Telemachus is invoked. It will analyze the template andgenerate from it the corresponding site-style, according to the syntax shown in Figure 5. This15

www.manaraa.com

Site Template
Page Template 1 Page Template 2 Page Template nPage Style 1 Page Style 2 Page Style n

Site Style

Site Pages

editing
editingeditingediting

Telemachus
Telemachus Telemachus
Penelope

? 6
6
66

?
? ? ?

?

���
����� �� ��

�� ��j �
?� s

Figure 6: Presentation Design using Telemachussite-style is then used again by Telemachus in order to produce a �rst version of the page-templates, one for each page-scheme in the pdl statement. Being all generated on the basis ofthe same site-style, these templates have a rather homogeneous layout.� Then, site-templates are analyzed one by one (if needed), and edited in order to re�ne andcustomize attribute layout. This may be needed because, for example, some page-schemes musthave di�erent headers and footers (di�erent background, di�erent icons), and their attributesspeci�c formatting (like attribute Room in page-scheme PROGRAM-PAGE above).� When this editing phase is completed, Telemachus can be invoked again in order to producepage-styles from page-templates. If the target mark-up language is xml, Telemachus alsogenerates an xsl style-sheet for each page-scheme, on the basis of the page-style: for eachattribute (i.e., xml element), an xsl rule is generated, that speci�es how to embed the value ofthe element within the pair of formatting strings in the style.Note that this process is such that presentation maintenance can be handled independently from theother ones in the site. If, in fact, some page-style is to be changed to improve the site layout, itis su�cient to modify the corresponding page-template and then let Telemachus produce the newstyle, which can then be used to generate the new pages.The actual prototype of Telemachus also provides advanced features, like styles with parametersand incremental generation of styles. For a detailed treatment of these issue, we refer the reader tothe Telemachus user manual.7 HomerIt can be seen from the previous sections that designing and implementing a site is a rather complextask, that involves several aspects and requires to deal with data under di�erent perspectives, map-ping the one onto the others. For large and complex Web sites, the complexity of the design andmaintenance process can be reduced only through the adoption of a systematic design methodology,16

www.manaraa.com

i.e., a set of models and design steps that lead from a conceptual speci�cation of the domain of interestto the implementation of the actual site.We have developed a thorough methodological framework for designing data-intensive Web sites,the Araneus methodology [12]. A key feature of our approach to Web site design that we wantto emphasize here is the clear distinction among di�erent levels: (i) database design; (ii) hypertextdesign; (iii) presentation design. The separation is justi�ed by the observation that the four levelsare largely independent. In essence, by adopting the methodology, designers start from a conceptualdescription of the site domain (an Entity-Relationship scheme) and through a set of precise stepsprogressively moves to database logical design (this produces the database relational scheme), thenhypertext design (this produces the site adm scheme), and �nally presentation design (producingpage-templates).To simplify this design process, as well as to automate the implementation phase based on the sitedesign artifacts, we have developed Homer, a case tool conceived to support the designer throughthe successive design steps. This is a natural complement of our approach, in which the site designevolves through di�erent levels and di�erent descriptions, each based on a formal model. Homerhas two main facilities: �rst, a graphical user-interface; second, a module to automatically generatecode to be run by the di�erent tools in order to implement the actual site. Brie
y, Homer worksas follows. First, the system takes as input a declarative speci�cation of the starting conceptualscheme of data and automatically translates it into a logical (relational) database scheme. Then, itsgraphical interface helps the designer in specifying transformations according to which constructs ofthe database conceptual scheme have to be manipulated in order to obtain the desired hypertext. Byprogressively applying these transformations the designer shapes the adm scheme of the resulting site.Once the adm description for the site has been generated, based on the speci�ed transformations,Homer automatically generates the pdl code to be used as an input the page-creation phase.8 Neptune: Towards Web-Based Information SystemsIt can be seen how the tools described in sections above represent a
exible platform for developingdata-intensive sites. Still, they provide little support for adding services and application to the site.Our goal is therefore to extend the framework with models and tools to handle application as a furtherlevel in the design and implementation phase. In this respect, work
ows [19] represent a promisingdirection. Born to automate business processes { i.e., coordinated procedures and activities aimedat realizing some business objective { work
ow management system are a natural solution to deliverservices on the Web [16, 22]. Moreover, in adopting work
ows we can leverage on a rather consolidatedplatform in terms of design and modeling [15, 13]. Our approach is to extend the framework developedin the previous sections with Neptune, a work
ow management system conceived to cooperate withother system tools. In this framework, the development of complex information systems is based onthe following simple ideas.A site is made of several intermixed portions: (i) a catalogue portion, of data-access pages, used toaccess and browse the site underlying database; (ii) one or more work
ow-execution portions, givingaccess to one or more services through the execution of a work
ow. To give an example, consider theconference site introduced above; most probably the site will have a public part, publishing data aboutaccepted papers, program, organization, and a private part to handle the review process; the latteris naturally implemented as a work
ow. A similar argument also holds for most electronic commercesites. The two di�erent portions are seamlessly combined in the site, in the sense that users may wantto browse some data while running the work
ow, or starting a work
ow after browsing the site.All the logics of the work
ow is handled by Neptune, which generates Java code to coordinatethe various activities, assign tasks to actors, and authenticate accesses to the work
ow, if necessary;the site is used as an interface to the work
ow, i.e., all the interaction between actors and work
owmanagement system happens through pages in the site; these pages are generate via a client-serverinteraction between Neptune on the client side and Penelope plus Telemachus on the server17

www.manaraa.com

1. DatabaseConceptual Design(er Scheme)2. DatabaseLogical Design(Relational Scheme)3. WorkFlowDesign 4. HypertextConceptual Design5. HypertextLogical Design(adm Scheme) 6. PresentationDesign(Page Templates)7. Site Generation(DBMS, Neptune, Penelope, Telemachus)

?
?PPPPPPPq QQQQs ???

����= JJJJĴ
?

Figure 7: The Araneus Web{Site Design Methodologyside, and contain suitable forms to collect user-inputs and execute tasks. Communication betweenthe site and the work
ow management system is based on the database, which is used to store boththe work
ow state and user inputs.We want to stress the fact that, as well as the data-access part, also the work
ow-executionpart of the site needs an hypertext and presentation design phase, and is fully integrated with thedata-access part, to which it can be linked. The introduction of the work
ow therefore changes theoverall design process. Figure 7 shows an extended version of our methodology for WBIS designand implementation. Details about the database and hypertext design phases can be found in [12].Work
ows are designed and described along the lines of [15, 13]. It can be seen how the four di�erentlevels (data, application, hypertext and presentation) are clearly distinguished, and at the sametime interact in the overall design and implementation process. Although the implementation ofNeptune is still under development, our �rst experiences with the prototype of Neptune haveshown the bene�ts of this approach. The site is in fact a natural platform for implementing thework
ow interface, whereas the design and development of a work
ow nicely �ts inside the designand implementation framework presented above.References[1] The araneus Project Home Page.http://www.dia.uniroma3.it/Araneushttp://www.difa.unibas.it/Araneus.[2] Faculty of Engineering at University of Basilicata. http://www.ing.unibas.it. In italian.[3] The HotMail web site. http://www.hotmail.com.[4] JDBC Database Access API. http://www.javasoft.com/products/jdbc/jdbc.html.[5] The Microsoft Web Site. http://www.microsoft.com.[6] The SQL standards page. http://www.jcc.com/sql stds.html.18

www.manaraa.com

[7] Extensible Markup Language (XML) 1.0 speci�cation. W3C Recommendation, February 1998.http://www.w3c.org/TR/REC-xml.[8] XML Linking Language (XLink). W3C Working Draft, March 1998. http://www.w3c.org/TR/WD-xlink.[9] XML Pointer Language (XPointer). W3CWorking Draft, March 1998. http://www.w3c.org/TR/WD-xptr.[10] G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring documents, databases and Webs. InFourteenth IEEE International Conference on Data Engineering (ICDE'98), Orlando, Florida, 1998.[11] P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In International Conf. on Very Large DataBases (VLDB'97), Athens, Greece, August 26-29, pages 206{215, 1997. http://www.dia.uniroma3.it/-Araneus/.[12] P. Atzeni, G. Mecca, and P. Merialdo. Design and maintenance of data-intensive Web sites. In VI Intl.Conference on Extending Database Technology (EDBT'98), Valencia, Spain, March 23-27, 1998.[13] F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of work
ows. In 14th InternationalConference on Object-Oriented and Entity-Relationship Modelling, (OOER'95) Gold Coast, Australia,December 12-15, 1995. Lecture Notes in Computer Science, Vol. 1021, Springer-Verlag, pages 341{354,1995.[14] R. G. G. Cattel. The Object Database Standard ODMG-93. Morgan Kaufmann Publishers, San Francisco,CA, 1994.[15] Work
owManagement Coalition. The work
ow reference model. WfMC Document n.TC00-1003, http:/-www.wfmc.org, 1995.[16] Work
ow Management Coalition. Work
ow and internet: Catalysts for radical change. WfMC WhitePaper, http:/www.wfmc.org, 1998.[17] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with Strudel: Experienceswith a web-site management system. In ACM SIGMOD International Conf. on Management of Data(SIGMOD'98), Seattle, Washington, pages 414{425, 1998.[18] P. Fraternali and P. Paolini. A conceptual model and a tool environment for developing more scalable,dynamic, and customizable Web applications. In VI Intl. Conference on Extending Database Technology(EDBT'98), Valencia, Spain, March 23-27, 1998.[19] D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of Work
ow Management: From processmodeling to infrastructure for automation. Journal on Distributed and Parallel Database Systems, 3(2),1995.[20] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of object identi�ers. In SixteenthInternational Conference on Very Large Data Bases, Brisbane (VLDB'90), pages 455{468, 1990.[21] G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The araneusWeb-Base Management System.In ACM SIGMOD International Conf. on Management of Data (SIGMOD'98), Seattle, Washington, pages544{546, 1998. Exhibition Program. http://www.dia.uniroma3.it/Araneus/.[22] J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H. Singh. WebWork: METEOR2's web-basedwork
ow management system. Journal of Intelligent Information Systems, 10(2):185{215, 1998.[23] F. Paradis and A. M. Vercoustre. A language for publishing virtual documents on the Web. In Proceedingsof the Workshop on the Web and Databases (WebDB'98) (in conjunction with EDBT'98) http://www.-dia.uniroma3.it/webdb98, 1998.[24] M.A. Roth, H.F. Korth, and A. Silberschatz. Extended algebra and calculus for :1NF relational databases.ACM Transactions on Database Systems, 13(4):389{417, December 1988.[25] G. Simeon and S. Cluet. Using YAT to build a Web server. In Proceedings of the Workshop on the Web andDatabases (WebDB'98) (in conjunction with EDBT'98) http://www.dia.uniroma3.it/webdb98, 1998.[26] G. Sindoni. Incremental maintenance of hypertext views. In Proceedings of the Workshop on the Web andDatabases (WebDB'98) (in conjunction with EDBT'98) http://www.dia.uniroma3.it/webdb98, 1998.
19

